Универсальный термический климатический индекс (UTCI) в середине ХХI в. на основании модельных прогнозов
https://doi.org/10.31857/S2658697525030066
Аннотация
Для оценки биоклиматических условий на территории России в середине ХХI в. в работе использовался универсальный термический климатический индекс UTCI. Исследовались сезонные и региональные особенности UTCI в условиях будущего климата (2040–2059 гг.) для двух сценариев: “мягкого” (SSP1-2.6) и “жесткого” (SSP5-8.5). Расчет среднесуточных значений индекса UTCI на территории России был выполнен с использованием программного пакета BioKlima 2.6. Для расчета использовались ежедневные данные трех моделей, участвующих в шестой фазе международного проекта межмодельного сравнения CMIP6 (Coupled Model Intercomparison Project): Института вычислительной математики РАН, Метеорологического офиса Центра Хэдли и Метеорологического института им. Макса Планка. Установлено, что на территории России в условиях будущего климата для обоих сценариев по-прежнему будут преобладать условия холодового стресса. Зимой (январь) практически на всей территории будет отмечаться холодовой стресс различных градаций. Летом (июль) на большей части территории России будут наблюдаться условия отсутствия теплового стресса, а на юге – комфорта. Оценка возможных будущих изменений биоклиматических условий на территории России в середине ХХI в. показала, что для обоих сценариев будет заметна тенденция сокращения дней с сильным холодовым стрессом и увеличения числа дней с тепловым стрессом на юге Европейской территории России и на юге и в центре Сибири, особенно по сценарию SSP5-8.5. Доля дней с градацией UTCI “нет теплового стресса” будет расти на большей части территории России. Наметившиеся тенденции будут способствовать улучшению биоклимата на севере и востоке страны и ухудшению условий в южных регионах, за счет роста числа дней с тепловым стрессом.
Ключевые слова
Список литературы
1. Виноградова В.В. Универсальный индекс теплового комфорта на территории России // Изв. РАН. Сер. геогр. 2019. № 2. С. 3–19.
2. Володин Е.М., Мортиков Е.В., Кострыкин С.В., Галин Б.Я., Лыкосов В.Н., Грицун А.С., Дианский Н.А., Гусев А.В., Яковлев Н.Г. Воспроизведение современного климата в новой версии модели климатической системы ИВМ РАН // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 2. С. 164–178.
3. Третий оценочный докл. об изменениях климата и их последствиях на территории Российской Федерации / под ред. В.М. Катцова. Росгидромет. СПб.: Наукоемкие технологии, 2022. 676 с.
4. Antonescu B., Mărmureanu L., Vasilescu J., Marin C., Andrei S., Boldeanu M., Ene D., Ţilea A. A 41-year bioclimatology of thermal stress in Europe // Int. J. Climatol. 2021. Vol. 41. P. 3934–3952. https://doi.org/10.1002/joc.7051
5. Błażejczyk K., Błażejczyk A. Assessment of bioclimatic variability on regional and local scales in central Europe using UTCI // Sci. Annals Alexandru Ioan Cuza Univ. IAŞI Geogr. Ser. 2014. Vol. 60. № 1. P. 67–82.
6. Błażejczyk K., Kunert A. Bioclimatic principles of recreation and tourism in Poland. 2nd ed. Monografie 13 (In Polish). Warszawa: IGiPZ PAN, 2011. 366 p.
7. Błażejczyk K., Broede P., Fiala D., Havenith G., Holmér I., Jendritzky G., Kampmann B., Kunert A. Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale // Misc. Geogr. 2010. № 14. P. 91–102.
8. Błażejczyk K., Jendritzky G., Bröde P., Fiala D., Havenith G., Epstein Y., Psikuta A., Kampmann B. An introduction to the Universal Thermal Climate Index (UTCI) // Geogr. Pol. 2013. Vol. 86. № 1. P. 5–10.
9. Boko N.P., Vissin E., Houssou S., Błażejczyk K. Application de l’indice universel de charge thermique dans le contexte africain: exemple de Cotonou (republique du Benin) // XXVIème colloque de l’Association Internationale de Climatologie. 2013. P. 105–109. https://www.researchgate.net/publication/273121602
10. Bröde P., Jendritzky G., Fiala D., Havenith G. The universal thermal climate index UTCI in operational use. Proceedings of conference: adapting to change: new thinking on comfort Cumberland Lodge, Windsor, UK, 9–11 April 2010. 2010.
11. Bröde P., Fiala D., Błażejczyk K., Holmér I., Jendritzky G., Kampmann B., et al. Deriving the operational procedure for the universal thermal climate index (UTCI) // Int. J. Biometeorol. 2012. Vol. 56. № 3. P. 481–494. https://doi.org/10.1007/s00484-011-0454-1 https://doi.org/10.24381/cds.c866074c (accessed on February 2023).
12. De Freitas C.R., Grigorieva E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices // Int. J. Biometeorol. 2017. Vol. 61. P. 487–512. https://doi.org/10.1007/s00484-016-1228-6
13. Di Napoli C., Pappenberger F., Cloke H.L. Assessing heatrelated health risk in Europe via the Universal Thermal Climate Index (UTCI) // Int. J. Biometeorol. 2018. Vol. 62. P. 1155–1165. https://doi.org/10.1007/s00484-018-1518-2
14. Fiala D., Havenith G., Bröde P., Kampmann B., Jendritzky G. UTCI Fiala multinode model human heat transfer and thermal comfort // Int. J. Biometeorol. 2012. Vol. 56. P. 429–441.
15. Founda D., Pierros F., Katavoutas G., Keramitsoglou I. Observed trends in thermal stress at European cities with different background climates // Atmosphere. 2019. № 10. P. 436. https://doi.org/10.3390/atmos10080436
16. Grigorieva E.A., Alexeev V.A., Walsh J.E. Universal thermal climate index in the Arctic in an era of climate change: Alaska and Chukotka as a case study // Int. J. Biometeorol. 2023. Vol. 67. P. 1703–1721. https://doi.org/10.1007/s00484-023-02531-2
17. Guerreiro S.B., Dawson R.J., Kilsby C., Lewis E., Ford A. Future heat-waves, droughts and floods in 571 European cities // Environ. Res. Lett. 2018. № 13. P. 034009. https://doi.org/10.1088/1748-9326/aaaad3
18. Havenith G., Fiala D., Błazejczyk K., Richards M., Bröde P., Holmér I., Rintamaki H., Benshabat Y., Jendritzky G. The UTCI-clothing model // Int. J. Biometeorol. 2012. Vol. 56. P. 461–470. https://doi.org/10.1007/s00484-011-0451-4
19. IPCC. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R.Yu and B. Zhou (Eds.). Cambridge, United Kingdom and NY, USA: Cambridge Univ. Press, 2021. P. 3−32.
20. Jendritzky G., De Dear R., Havenith G. UTCI – why another thermal index? // Int. J. Biometeorol. 2012. Vol. 56. № 3. P. 421–428.
21. Katavoutas G., Founda D., Varotsos K.V., Giannakopoulos Ch. Climate change impacts on thermal stress in four climatically diverse European cities // Int. J. Biometeorol. 2022. Vol. 66. P. 2339–2355. https://doi.org/10.1007/s00484-022-02361-8
22. Mauritsen T., Roeckner E. Tuning the MPI-ESM1.2 Global Climate Model to Improve the Match With Instrumental Record Warming by Lowering Its Climate Sensitivity // JAMES. 2020. Vol. 12. № 5. Art. e2019MS002037. https://doi.org/10.1029/2019MS002037
23. Pappenberger F., Hannah L.C. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI) // Int. J. Biometeorol. 2018. Vol. 62. P. 1155–1165. https://doi.org/10.1007/s00484-018-1518-2
24. Pappenberger F., Jendritzky G., Staiger H., Dutra E., Di Giuseppe F., Richardson D.S., et al. Global forecasting of thermal health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI) // Int. J. Biometeorol. 2015. Vol. 59. № 3. P. 311–323. http://doi.org/10.1007/s00484-014-0843-3
25. Vinogradova V.V. Using the Universal Thermal Climate Index UTCI) for the assessment of bioclimatic conditions in Russia // Int. J. Biometeorol. 2021. Vol. 65 P. 1473–1483. https://doi.org/10.1007/s00484-020-01901-4
26. Staiger H., Laschewski G., Matzarakis A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies // Atmosphere. 2019. № 10. P. 18. https://doi.org/10.3390/atmos10010018
27. Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being / Final Report COST Action 730 / G. Jendritzky, G. Havenith, P. Weihs, E. Batchvarova (Eds.). Brussel, 2009.
28. Williams K.D., Copsey D., Blockley E.W., Bodas-Salcedo A., Calvert D., Comer R., Davis P., Graham T., Hewitt H.T., Hill R., Hyder P., Ineson S., et al. The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations // JAMES. 2017. https://doi.org/10.1002/2017MS001115
29. WMO, 2021: State of the Global Climate 2020 // WMO. 2021. № 1264. 56 p. https://library.wmo.int/doc_num.php?explnum_id=10618
Рецензия
Для цитирования:
Виноградова В.В. Универсальный термический климатический индекс (UTCI) в середине ХХI в. на основании модельных прогнозов. Известия Российской академии наук. Серия географическая. 2025;89(3):406-419. https://doi.org/10.31857/S2658697525030066
For citation:
Vinogradova V.V. Universal Thermal Climate Index (UTCI) in the Middle of the 21st Century According to Model Forecasts. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2025;89(3):406-419. (In Russ.) https://doi.org/10.31857/S2658697525030066





























