CYCLONE ACTIVITY IN THE ARCTIC FROM REANALYSES DATA AND REGIONAL CLIMATE MODEL SIMULATIONS
https://doi.org/10.7868/S0373244417060044
Abstract
About the Authors
Mirseid G. AkperovRussian Federation
Moscow
Мariya А. Dembitskaya
Russian Federation
Moscow
Igor I. Mokhov
Russian Federation
Moscow
References
1. Akperov M.G., Mokhov I.I. A comparative analysis of the method of extratropical cyclone identification. Izv., Atmos. Ocean. Phys., 2010, vol. 46, no. 5, pp. 620–637.
2. Akperov M.G., Mokhov I.I. Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime. Izv., Atmos. Ocean. Phys., 2013, vol. 49, no. 2, pp. 129–136.
3. Akperov M.G., Bardin M. Yu., Volodin E.M., Golitsyn G.S., Mokhov I.I. Probability distributions for cyclones and anticyclones from the NCEP/ NCAR reanalysis data and the INM RAS climate model. Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 6, pp. 764–772.
4. Alekseev G.V. Arctic dimension of global warming. Ice and Snow, 2014, vol. 54, no. 2, pp. 53–68. (In Russ.).
5. Golitsyn G.S., Mokhov I.I., Akperov M.G., Bardin M. Yu. Distribution functions of probabilities of cyclones and anticyclones from 1952 to 2000: an instrument for the determination of global climate variations. Dokl. Earth Sci., 2007, vol. 413, no. 2, pp. 254–256.
6. Meteorologicheskie i geofizicheskie issledovaniya. Seriya: «Vklad Rossii v Mezdunarodnyi polarnyi god 2007/08» [Meteorological and Geophysical Research. Series: “Russia’s Contribution to the International Polar Year 2007/08”]. Alekseev G.V., Ed. Moscow: Paulsen Publ., 2011. 352 p.
7. Mokhov I.I. Contemporary Climate Changes in the Arctic. Herald Russ. Acad.f Sci., 2015, vol. 85, no. 5–6, pp. 478–484.
8. Mokhov I.I., Akperov M.G., Lagun V.E., Lutsenko E.I. Intense Arctic mesocyclones. Izv., Atmos. Ocean. Phys., 2007, vol. 43, no. 3, pp. 291–297.
9. Mokhov I.I., Mokhov O.I., Petukhov V.K., Khayrullin R.R. Effect of global climatic changes on the cyclonic activity in the atmosphere. Izv., Atmos. Ocean. Phys., 1992, vol. 28, no. 1, pp. 11–26.
10. Mokhov I.I., Mokhov O.I, Petoukhov V.K., Khairullin R.R. On the influence of cloudiness on vortex activity in the atmosphere during climate change. Russ. Meteorol. Hydrol., 1992, no. 1, pp. 5–11.
11. Mokhov I.I., Semenov V.A., Khon V.C., Pogarsky F.A. Change of sea ice content in the Arctic and the associated climatic effects: detection and simulation. Ice and Snow, 2013, no. 2(122), pp. 53–62, DOI:10.15356/2076-6734-2013-2-53-62.
12. Akperov M., Mokhov I. I., Rinke A., Dethloff K., Matthes H. Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations. Theor. Appl. Climat., 2015, vol. 122, no. 1, pp. 85–96.
13. Bromwich D.H., Hines K.M., Bai L.-S. Development and testing of Polar WRF: 2. Arctic Ocean. J. Geophys. Res., 2009, vol. 114, no. D08122, DOI:10.1029/2008JD010300.
14. Dethloff K., Rinke A., Lehmann R., Christensen J.H., Botzet M., Machenhauer B. Regional climate model of the Arctic atmosphere. J. Geophys. Res., 1996, vol. 101D, no. 18, pp. 23401–23422.
15. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J.R. Meteorol. Soc., 2011, vol. 137, pp. 553–597.
16. Neu U., Akperov M.G., Benestad R., et al. IMILAST – a community effort to intercompare cyclone detection and tracking algorithms: quantifying method-related uncertainties. Bull. Amer. Meteorol. Soc., 2013, vol. 94, no. 4, pp. 529–547.
17. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 2014, vol. 7, pp. 181–184.
18. Polar Lows. Rasmussen E., Turner J., Eds. Cambridge University Press, 2003. 612 p.
19. Shkolnik I.M., Efimov S.V. Cyclonic activity in high latitudes as simulated by a regional atmospheric climate model: added value and uncertainties. Environ. Res. Lett., 2013, vol. 8. 045007, DOI: 10.1088/1748–9326/8/4/045007.
20. Simmonds I., Burke C., Keay K. Arctic climate change as manifest in cyclone behavior. J. Climate, 2008, vol. 21, pp. 5777–5796.
21. Ulbrich U., Leckebusch G.C., Grieger J., et al. Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm? Meteorologische Zeitschrift, 2013, vol. 22, no. 1, pp. 61–68.
22. Uppala S.M., Kållberg P.W., Simmons A.J., et al. The ERA-40 re-analysis. Quart. J.R. Meteorol. Soc., 2005. vol. 131, pp. 2961–3012.
23. von Storch H., Langenberg H., Feser F. A spectral nudging technique for dynamical downscaling purposes. Mon. Weather. Rev., 2000, vol. 128, pp. 3664–3673.
Review
For citations:
Akperov M.G., Dembitskaya М.А., Mokhov I.I. CYCLONE ACTIVITY IN THE ARCTIC FROM REANALYSES DATA AND REGIONAL CLIMATE MODEL SIMULATIONS. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2017;(6):39-46. (In Russ.) https://doi.org/10.7868/S0373244417060044