Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

APPLICATION OF THE DNDC MODEL FOR ESTIMATION OF CARBON AND NITROGEN EXCHANGE PARAMETERS IN ARABLE SOILS IN NON-CHERNOZEM ZONE

https://doi.org/10.7868/S2587556618020073

Abstract

The approbation of the DNDC (DeNitrification-DeComposition) model was done with the aim to estimate an opportunity of model using for analysis of carbon and nitrogen exchange and greenhouse gases dynamics in agroecosystems of arable soils in the Central Non-Chernozem Zone of Russia. The research can be divided into two blocks: estimation of model sensitivity and its verification on the base of field experiments data and statistical calculations. This article presents the results of analysis of model sensitivity to input parameters change. It is shown that in the Russian Non-Chernozem Zone the amount of fertilizers is the most important factor influencing on regional carbon and nitrogen biogeochemical cycles and the greenhouse gases emission. Annual increase of soil organic carbon content depends on weather conditions and soil texture (clay fraction). Carbon dioxide emission isensitive to crops biological characteristics and tillage intensity. According to modeling data, in the Non-Chernozem Zone’s agrocenoses methane is primarily absorbed by soil. The concentration of nitrous oxide is more sensitive to tillage and fertilizing than to amount of precipitation, and its annual values fluctuate in a small range.

About the Author

Olga E. Sukhoveeva
Institute of Geography, Russian Academy of Sciences
Russian Federation

Olga E. Sukhoveeva 

Moscow



References

1. Alekseeva A.A., Fomina N.V. The analysis of the reducingenzyme activity of the agrogenic changed soils in the forest nurseries of the Krasnoyarsk krai foreststeppe zone. Vestn. Krasnoyarsk. Gos. Agr. Univ., 2015, no. 1, pр. 32–35. (In Russ.).

2. Aliev A.M., Varlamov V.A., Derzhavin L.M., Samoilov L.N., Perevedentseva S.V., Yakovleva T.A. Efficiency of fertilizers and pesticides complex using in crop rotation (field experiment CSh-2/60). In Rezul’taty dlitel’nykh issledovanii v sisteme geograficheskoi seti opytov s udobreniyami Rossiiskoi Federatsii [Results of Long-term Research in System of Geographical Web of Experiments on Fertilizers in Russian Federation]. Moscow: ARRIA Publ., 2011, pp. 17–33. (In Russ.).

3. Vnesenie udobrenii pod urozhai 1990–2014 gg. i provedenie rabot po himicheskoi melioratsii zemel’ [Fertilizers Input for Yields 1990–2014 and Implementation of Chemical Melioration]. Moscow: Rosstat Publ., 1991–2015. 64 p.

4. Grachev V.A. Tipovye tekhnologicheskie karty dlya planirovaniya i organizatsii proizvodstva zerna, kormov, kartofelya i l’na-dolguntsa v hozyaistvakh Central’nogo raiona Nechernozemnoi zony RSFSR [Typical Technological Cards for Planning and Organization of Grain, Feed, Potato, and Flax Production in Farms of Central Non-Chernozem Zone of Russia]. Moscow: Ministry of Agriculture, 1980. 145 p.

5. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii. Versia 1.0. [Unified State Register of Soil Recourses of Russia]. Moscow: Soils Institute, 2014. 768 p.

6. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: University Press, 2014. 1435 p.

7. Kurganova I.N., Lopes de Gerenyu V.O., Myakshina T.N., Sapronov D.V., Kudeyarov V.N. CO2 emission from soils of various ecosystems of the southern taiga zone: data analysis of continuous 12-year monitoring. Dokl. Biol. Sci., 2011, vol. 436, no. 6, pp. 843–846. (In Russ.).

8. Likov A.M., Es’kov A.I., Novikov M.N. Organicheskoe veshchestvo pakhotnykh pochv Nechernozem’ya [Organic matter of arable soils of Non-Chernozem Zone]. Moscow: Rosselchozakademia, 2004. 630 p.

9. Moiseev B.N., Alyabina I.O. Evaluation and mapping of components of carbon and nitrogen balance in the Main Bioms of Russia. Izv. Ross. Akad. Nauk. Ser. Geogr., 2007, no. 5, pp. 116–127. (In Russ.).

10. The National Report of the Russian Federation on the Inventory of the Anthropogenic Emissions and Sinks of Greenhouse Gases Not Controlled by the Montreal Protocol for the years 1990–2013. Moscow: Roshydromet, 2015. 476 p.

11. Romanenkov V.A. Dynamics of soil carbon storage in agrocenoses of European part of Russia (on the base of long-term agrochemical field experiments). Extended Abstract of Doctoral (Biol.) Dissertation. Moscow, ARRIA, 2010. 46 p.

12. Romanovskaya A.A. Methane and nitrous oxide emission in the agricultural sector of Russia. Russ. Meteor. Hydrol., 2008, no. 2, pp. 87–97. (In Russ.).

13. Sapronov D.V. Long-term dynamics of CO2 emission from grey forest and sod-podzol soils. Extended Abstract of Cand. Sci. (Biol.) Dissertation. Pushchino, IFCBPS RAS, 2008. 20 p.

14. Spetsializirovannye massivy dlya klimaticheskikh issledovanii: Informacia VNIIGMI-MCD [Special massifs for climatic research: Information of RIHMI-WDC]. http://aisori.meteo.ru/ClimateR.

15. Khokhlov V.G. Organic matter of sod-podzolic soils in Smolensk region. Extended Abstract of Cand. Sci. (Agricult.) Dissertation. Moscow: MTAA Publ., 1980. 16 p. (In Russ.).

16. Chistotin M.V., Haidukov K.R., Safonov A.F. Connection between spatial variation of C-containing gases f lows and soil properties in the long-term experiment of RTSAU. Izv. Timiryazev Agricult. Acad., 2012, no. 3, pp. 27–35. (In Russ.).

17. Balashov E., Horak J., Siska B., Buchkina N., Rizhiya E., and Pavlik S. N2O fl from agricultural soils in Slovakia and Russia – direct measurements and prediction using the DNDC model. Folia Oecologica, 2010, vol. 37, no. 1, pp. 8–15.

18. Li C., Frolking S., and Frolking T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. J. Geophys. Res., 1992, vol. 97, no. D9, pp. 9759–9776.

19. Li С. Quantifying greenhouse gas emissions from soils: Scientific basis and modeling approach. Soil Sci. Plant Nutrition, 2007, vol. 53, no. 4, pp. 344–352.

20. Li C., Frolking S., and Harriss R. Modelling carbon biogeochemistry in agricultural soils. Global Biogeochem. Cycles, 1994, no. 8, pp. 237–254.

21. User’s guide for the DNDC model. Version 9.5. Institute for the Study of Earth, Oceans, and Space. USA, University of New Hampshire, 2012. 104 p.

22. Zhang Y., Li C., Zhou X., and Moore B. A simulation model linking crop grows and soil biogeochemistry for sustainable agriculture. Ecolog. Mmodel., 2002, no. 151, pp. 75–108.


Graphical Abstract

1. Evaluation of the DNDC carbon submodel sensitivity
Subject
Type Исследовательские инструменты
View (129KB)    
Indexing metadata ▾
2. Evaluation of the DNDC carbon submodel sensitivity
Subject
Type Исследовательские инструменты
View (147KB)    
Indexing metadata ▾
  • Sensitivity of the DNDC (DeNitrification-DeComposition) model to the changes in input parameters was estimated for Non-Chernozem zone.
  • In this region greenhouse gases emission mainly depends on the amount of fertilizers applied.
  • Weather conditions, soil texture, crops features, tillage intensity mostly affect the carbon cycle.
  • Tillage and fertilizing are more important factors for nitrous oxide emission than precipitations.

Review

For citations:


Sukhoveeva O.E. APPLICATION OF THE DNDC MODEL FOR ESTIMATION OF CARBON AND NITROGEN EXCHANGE PARAMETERS IN ARABLE SOILS IN NON-CHERNOZEM ZONE. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2018;(2):74-85. (In Russ.) https://doi.org/10.7868/S2587556618020073

Views: 458


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)