Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Annual Suspended Sediment Load of the Yenisei River

https://doi.org/10.31857/S2587-55662019668-82

Abstract

Field studies, including high-frequency sampling for suspended sediment flux estimation, were conducted in 2014–2016 in the city of Igarka, at the outlet of the Yenisei River. During spring freshet of each year, multiple suspended sediment concentration (SSC) peaks were observed, irrelated to water discharge fluctuations. The form of hysteresis loops evidences the importance of input from local in-channel sediment sources, i.e. banks and bedforms, and scouring of bed material, deposited during winter, in observed sharp SSC peaks. On the falling stage of the freshet, longer peaks are related to sediment waves from major tributaries, notably the Nizhnyaya Tunguska River. Annual sediment load was calculated based on the daily water discharge and observed SSC data, using sediment rating curves and LOADEST models as two reference methods. Mean annual suspended sediment load of the Yenisei River in Igarka is estimated at 8.1 ± 0.5 mln t., which significantly exceeds previously published values for the 1970–2001 period, from 4.6 to 5.9 mln t. Cumulative sediment load for 2014–2016 totals 24.2 ± 2.1 mln t.

About the Authors

N. I. Tananaev
Melnikov Permafrost Institute, Siberian Branch, Russian Academy of Sciences; EcoLab, Universite de Toulouse, CNRS
Russian Federation


R. Teisserenc
EcoLab, Universite de Toulouse, CNRS
France


T. Le Dantec
EcoLab, Universite de Toulouse, CNRS
France


References

1. Alekseevsky N.I. Formirovanie i dvizhenie rechnykh nanosov [Origin and Transfer of Riverine Sediments]. Moscow: Mosk. Gos. Univ., 1998. 202 p.

2. Alekseevsky N.I. The concept of geoflux and the state of small rivers. Erozionnye i Ruslovye Protsessy, 2000, no. 13, pp. 68–77. (In Russ.).

3. Alekseevsky N.I., Vlasov B.N., Doronin Yu.P., Sidorchuk A.Yu., Tsarev V.A. The influence of mining on the sediment flux of rivers in the Omoloy and the Yana River basins and on the Laptev sea shelf. In Ratsional’noe prirodopol’zovanie v kriolitozone [Environmental Management in Permafrost]. Moscow: Nauka Publ., 1992, pp. 68–77. (In Russ.).

4. Magritsky D.V. Annual suspended matter flow of the Russian rivers belonging to the Arctic ocean basin and its anthropogenic transformation. Vestn. Mosk. Univ., Ser. 5: Geogr., 2010, no. 6, pp. 17–24. (In Russ.).

5. Mikhailov V.N. Gidrologiya ust’ev rek [River Mouths’ Hydrology]. Moscow: Mosk. Gos. Univ., 1998. 176 p.

6. Gidrologicheskie nablyudeniya na bol'shikh i srednikh rekakh [Hydrological Monitoring on Large and Medium-sized Rivers], no. 6 of Nastavlenie gidrologicheskim stantsiyam i postam [Instruction to Hydrological Stations and Gauges]. Leningrad: Gidrometeoizdat Publ., 1978, part 1. 78 p.

7. Tananaev N.I. Hysteresis effect in the seasonal variations in the relationship between water discharge and suspended load in rivers of permafrost zone in Siberia and Far East. Water Resour., 2012, vol. 39, no. 6, pp. 648–656.

8. Tananaev N.I. Applying regression analysis to calculating suspended sediment runoff: Specific features of the method. Water Resour., 2013, vol. 40, no. 6, pp. 585–592.

9. Tananaev N.I., Lebedeva L.S. The organic component of particulate matter in small streams of the Northern Yenisey region during the summer-autumn period. Geogr. Nat. Resour., 2018, vol. 39, no. 2, pp. 140–147.

10. Asselman N.E.M. Fitting and interpretation of sediment rating curves. J. Hydrol., 2000, vol. 234, no. 3–4, pp. 228–248.

11. Bogen J. The hysteresis effect of sediment transport system. Nor. J. Geogr., 1980, vol. 34, no. 1, pp. 45–54.

12. Cohn T.A., DeLong L.L., Gilroy E.J., Hirsch R.M., Wells D.K. Estimating constituent loads. Water Resour. Res., 1989, vol. 25, no. 5, pp. 937–942.

13. Gordeev V.V. Fluvial sediment flux to the Arctic Ocean. Geomorphology, 2006, vol. 80, no. 1–2, pp. 94–104. doi: 10.1016/j.geomorph.2005.09.008

14. Horowitz A.J., Elrick K.A., Smith J.J. Estimating suspended sediment and trace element fluxes in large river basins: methodological considerations as applied to the NASQAN programme. Hydrol. Process., 2001, vol. 5, no. 17, pp. 1107–1132. doi: 10.1002/hyp.206

15. Horowitz A.J., Stephens V.C., Elrick K.A., Smith J.J. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data. Hydrol. Process., 2012, vol. 26, no. 7, pp. 1090–1114. doi:10.1002/hyp.8437

16. Kokelj S.V., Lacelle D., Lantz T.C., Tunnicliffe J., Malone L., Clark I.D., Chin K.S. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf., 2013, vol. 118, no. 2, pp. 681–692. doi: 10.1002/jgrf.20063

17. LOADEST: Load Estimator. USGS. 2013. Available at: https://water.usgs.gov/software/loadest/ (accessed: 29.05.2019).

18. Lloyd C.E.M., Freer J.E., Johnes P.J., Collins A.L. Technical note: Testing an improved index for analysing storm discharge–concentration hysteresis. Hydrol. Earth Syst. Sci., 2016, vol. 20, no. 2, pp. 625–632. doi: 10.5194/hess-20-625-2016

19. Lobbes J., Fitznar H., Kattner G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic ocean. Geochim. Cosmochim. Acta, 2000, vol. 64, no. 17, pp. 2973–2983.

20. McClelland J.W., Holmes R.M., Peterson B.J., Raymond P.A., Striegl R.G., Zhulidov A.V., Zimov S.A., Zimov N., Tank S.E., Spencer R.G.M., Staples R., Gurtovaya T.Y., Griffin C.G. Particulate organic carbon and nitrogen export from major Arctic rivers. Global Biogeochem. Cycles, 2016, vol. 30, no. 5, pp. 629–643. doi: 10.1002/2015GB005351

21. Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. Part I — A discussion of principles. J. Hydrol., 1970, vol. 10, no. 3, pp. 282–290.

22. Nummelin A., Ilicak M., Li C., Smedsrud L.H. Con sequences of future increased Arctic runoff on Arctic ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans, 2016, vol. 121, pp. 617–637. doi: 10.1029/2015JC011156

23. Opsahl S., Benner R., Amon R.M.W. Major flux of terrigenous organic matter through the Arctic Ocean. Limnol. Oceanogr., 1999, vol. 44, no. 8, pp. 2017–2023. doi: 10.4319/lo.1999.44.8.2017

24. Peterson B.J., Holmes R.M., McClelland J.W., Vorosmarty C.J., Lammers R.B., Shiklomanov A.I., Shiklomanov I.A., Rahmstorf S. Increasing river discharge to the Arctic Ocean. Science, 2002, vol. 298, no. 5601, pp. 2171–2173.

25. RStudio Team. RStudio: Integrated Development Environment for R. Version 0.99.489. Boston, MA: RStudio, Inc., 2015. Available at: http://www.rstudio. com/ (accessed: 29.05.2019).

26. Runkel R.L., Crawford C.G., Cohn T.A. Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. Reston, VA, USA: USGS, 2004. 75 p. doi: 10.3133/ tm4A5

27. St. Jacques J.-M., Sauchyn D.J. Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwest Territories, Canada. Geophys. Res. Lett., vol. 36, no. 1, L01401. doi: 10.1029/2008GL035822

28. Syvitski J.P.M. Sediment discharge variability in Arctic rivers: implications for a warmer future. Polar Res., 2006, vol. 21, no. 2, pp. 323–330. doi: 10.1111/ j.1751-8369.2002.tb00087.x

29. Tananaev N.I. Hysteresis effects of suspended sediment transport in relation to geomorphic conditions and dominant sediment sources in medium and large rivers of the Russian Arctic. Hydrol. Res., 2015, vol. 46, no. 2, pp. 232–243. doi: 10.2166/nh.2013.199

30. Tananaev N.I., Makarieva O.M., Lebedeva L.S. Trends in annual and extreme flows in the Lena River basin, Northern Eurasia. Geophys. Res. Lett., vol. 43, no. 20, pp. 10 764–10 772. doi: 10.1002/2016GL070796

31. Williams G.P. Sediment concentration versus water discharge during single hydrologic events in rivers. J. Hydrol., 1989, vol. 111, no. 1–4, pp. 89–106. doi: 10.1016/0022-1694(89)90254-0


  • Suspended sediments in the lower reach of the Yenisei River originate either from local bed scouring and bank erosion or from major tributaries, e.g. Nizhnyaya Tunguska.
  • Mean annual suspended sediment flux of the Yenisei River is 8.1 ± 0.5 million tonnes; that is about 1.5 times higher than the 1970–2001 average value.
  • The officially published data on water turbidity of the Yenisei River in Igarka underestimate the annual suspended sediment flux by 3 to 5 times.

Review

For citations:


Tananaev N.I., Teisserenc R., Le Dantec T. Annual Suspended Sediment Load of the Yenisei River. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2019;(6):68-82. (In Russ.) https://doi.org/10.31857/S2587-55662019668-82

Views: 607


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)