Runoff Components of Small Catchments in Sikhote-Alin: Summarizing the Results of Field Measurements and Tracer Modeling
https://doi.org/10.31857/S2587-556620196126-140
Abstract
About the Authors
T. S. GubarevaRussian Federation
B. I. Gartsman
Russian Federation
V. V. Shamov
Russian Federation
T. N. Lutsenko
Russian Federation
A. G. Boldeskul
Russian Federation
N. K. Kozhevnikova
Russian Federation
S. Yu Lupakov
Russian Federation
References
1. Arzhanova V.S., Yelpatyevsky P.V. Geokhimiya, funk tsi onirovanie i dinamika gornykh geosistem Sikhote-Alinya [Geochemistry, Functioning and Dynamics of the Sikhote-Alin Mountain Geosystems]. Vladivostok: Dalnauka Publ., 2005. 247 p.
2. Boldeskul A.G., Shamov V.V., Gartsman B.I., Kozhev nikova N.K. Main ions in water of different genetic types in a small river basin: case experimental studies in Central Sikhote-Alin. Tikhookean. Geol., 2014, vol. 33, no. 2, pp. 90–101. (In Russ.).
3. Voronkov P.P. Regularities in the formation process and zonation of water chemistry in local runoff. Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1963, no. 102, pp. 43–119. (In Russ.).
4. Gartsman B.I., Shamov V.V. Field studies of runoff formation in the Far East Region based on modern observational instruments. Water Resour., 2015, vol. 42, no. 6, pp. 766–775.
5. Gubareva T.S., Boldeskul A.G., Gartsman B.I., Shamov V.V. Analysis of natural tracers and genetic runoff components in mixing models: case study of small basins in Primor’e. Water Resour., 2016, vol. 43, no. 4, pp. 629–640.
6. Gubareva T.S., Gartsman B.I., Solopov V.N. A model of mixing of four river runoff recharge sources using hydrochemical tracers in the problem of hydrograph separation. Water Resour., 2018, vol. 45, no. 6, pp. 827–838.
7. Gubareva T.S., Gartsman B.I., Shamov V.V., Boldeskul A.G., Kozhevnikova N.K. Genetic disintegration of the runoff hydrograph. Russ. Meteorol. Gydrol., 2015, vol. 40, no. 3, pp. 215–222.
8. Kondratiev I.I. The trans-boundary factor in chemical composition variability of atmospheric precipitation in the southern Far East. Geogr. Nat. Resour., 2009, vol. 30, no. 3, pp. 236–241.
9. Lutsenko T.N., Shamov V.V., Gartsman B.I., Gubareva T.S., Kozhevnikova N.K., Boldeskul A.G., Lupakov S.Yu. Spacio-temporal dynamics of dissolved organic carbon in the streams of system of the upper Ussuri river (south of the Far East of Russia). In Organicheskoe veshchestvo i biogennye elementy vo vnutrennikh vodoemakh i morskikh vodakh Pochvy v biosfere [Organic Matter and Biogenic Elements in Inland and Seawater]. Barnaul: Inst. Vodn. Ekol. Probl. Sib. Otd. Akad. Nauk, 2017, pp. 155–160. (In Russ.).
10. Ali G.A., Roy A.G., Turmel M.C., Courchesne F. Source-to-stream connectivity assessment through end-member mixing analysis. J. Hydrol., 2010, vol. 3–4, no. 392, pp. 119-135.
11. Barthold F.K., Turner B.L, Elsenbeer H., Zimmermann A. A hydrochemical approach to quantify the role of return flow in a surface flow-dominated catchment. Hydrol. Process., 2017, vol. 31, no. 5, pp. 1018-1033.
12. Christophersen N., Neal C., Hooper R.P., Vogt R.D., Andersen S. Modelling stream water chemistry of soilwater end-members - a step towards second-generation acidification models. J. Hydrol., 1990, vol. 116, no. 1–4, pp. 307-320.
13. Correa A., Windhorst D., Tetzlaff D., Crespo P., Célleri R., Feyen J., Breuer L. Temporal dynamics in dominant runoff sources and flow paths in the Andrean Paramo. Water Resour. Res., 2017, vol. 53, no. 7, pp. 5998-6017.
14. Cristophersen N., Hopper R.P. Multivariate analysis of stream water chemical data: the use of principal component analysis for the end-member mixing problem. Water Resour. Res., 1992, vol. 28, no. 1, pp. 99–107.
15. Hooper R.P. Diagnostic tools for mixing models of stream water chemistry. Water Resour. Res., 2003, vol. 39, no. 3. doi 10.1029/2002WR001528
16. Iwasaki K., Katsuyama M., Tani M. Contributions of bedrock groundwater to the upscaling of storm-runoff generation processes in weathered granitic headwater catchments. Hydrol. Process., 2015, vol. 29, no. 6, pp. 1535-1548.
17. James A.L., Roulet N.T. Investigating the applicability of end-member mixing analysis (EMMA) across scale: A study of eight small, nested catchments in a temperate forested watershed. Water Resour. Res., 2006, vol. 42, no. 8. doi 10.1029/2005WR004419
18. Katsuyama M., Ohte N., Kobashi S. A three-component end-member analysis of streamwater hydrochemistry in a small Japanese forested headwater catchment. Hydrol. Process., 2001, vol. 15, no. 2, pp. 249–260.
19. Leibundgut С., Maloszewski P., Külls C. Tracers in Hydrology. Chichester: Wiley, 2009. 432 p.
Graphical Abstract
|
1. Динамика компонент стока во время паводковых событий | |
Subject | ||
Type | Исследовательские инструменты | |
View
(133KB)
|
Indexing metadata ▾ |
|
2. Dynamics of runoff components during flood events | |
Subject | ||
Type | Исследовательские инструменты | |
View
(238KB)
|
Indexing metadata ▾ |
- In the case of landscape uniformity of a catchment (Medvezhiy Creek), the hydrograph separation includes: rain component, baseflow, and water component from the surface soil organic layer.
- If the landscape structure of catchment is heterogeneous (Elovy Creek), the soil component in river water is divided into independent components namely soil water from the organic layer and soil water of the mineral layer.
- The soil mineral component in the runoff is due to the spread of landscapes of the cold upper belt of fir-spruce forests, the soils of which are characterized by a lower rate of organic matter destruction and a deeper illuviation process of dissolved organic carbon (DOC).
Review
For citations:
Gubareva T.S., Gartsman B.I., Shamov V.V., Lutsenko T.N., Boldeskul A.G., Kozhevnikova N.K., Lupakov S.Yu. Runoff Components of Small Catchments in Sikhote-Alin: Summarizing the Results of Field Measurements and Tracer Modeling. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2019;(6):126-140. (In Russ.) https://doi.org/10.31857/S2587-556620196126-140